Publications
Laser resonance chromatography of 229Th3+ in He: An ab initio investigation
G. Visentin, A. Borschevsky, L. Viehland, S. Fritzsche, and M. Laatiaou July 2024
In this paper we report the theoretical proof-of-principle for laser resonance chromatography of thorium-229 isotope in its 3+ charge state as it would be needed for the development of a precise ion trap-based optical clock.
Link: https://journals.aps.org/pra/accepted/7b07fNffF2d1ed2594a512b90c107c82cb1942d93
Laser Resonance Chromatography: First commissioning results and future prospects
E. Kim et al July 15, 2024
The Laser Resonance Chromatography (LRC) technique is being under development for future optical spectroscopy of the heaviest elements starting with lawrencium (Z=103) and beyond. In this paper, we describe the LRC apparatus and technique in very detail and report first experimental results from inauguration experiments carried out on singly charged lutetium (Z=71), the lighter chemical homolog of lawrencium.
Link: https://www.sciencedirect.com/science/article/pii/S0168583X24002313
Transport-property predictions for laser resonance chromatography on Rf+ (Z=104)
G. Visentin, H. Ramanantoanina, A. Borschevsky, L. Viehland, B. Jana, A. Arya, S. Fritzsche, and M. Laatiaou June 24, 2024
Rf+ is another promising cation of electronic structure that should be accessible utilizing laser resonance chromatography (LRC). In this paper, key transport properties of this cation in helium gas were studied as function of gas temperature and reduced electric fields, with realistic boundary conditions suggested for LRC experiments.
Link: https://journals.aps.org/pra/accepted/a707aNcdC441972641bf3d415aa5f2eb2cf363620
In-gas-jet laser spectroscopy of 254No with JetRIS
J. Lantis et June 24, 2024
Here, results from online in-gas-jet resonance ionization spectroscopy on No-254 were reported, marking the first sub-GHz resolution spectroscopy in the region of the transfermium elements.
Link: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.023318
Opportunities and limitations of in-gas cell spectroscopy of the heaviest elements with RADRIS
S. Raeder et al August, 2023
In this article the opportunities and limitations of the RADRIS technique is reported based on laser-resonance-ionization spectroscopy experiments on francium, actinium, and fermium isotopes of different half-lives.
Link: https://www.sciencedirect.com/science/article/pii/S0168583X23001830?via%3Dihub
State-specific ion mobilities of Lr+ (Z=103) in helium
H. Ramanantoanina, A. Borschevsky, M. Block, L. Viehland, and M. Laatiao July 5, 2023
In this paper ion mobilities of Lr+ from ab initio interaction potentials were reported to provide and excellent case for the application of the newly developed LRC technique for the electronic structure investigations on this heaviest actinide element.
Link: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.108.012802
Observation of the radiative decay of the 229Th nuclear clock isomer
S. Kraemer et al May 24, 2023
This nature paper reports on the first detection of the radiative decay of the nuclear clock isomer in thorium-229. The reported results lay the foundations for the development of a nuclear clock with unprecedented precision.
Link: Link: https://www.nature.com/articles/s41586-023-05894-z
A Progress Report on Laser Resonance Chromatography
E. Romero Romero, M. Block, B. Jana, E. Kim, S. Nothhelfer, S. Raeder, H. Ramanantoanina, E. Rickert, J. Schneider, P. Sikora and M. Laatiaoui
Research on superheavy elements enables probing the limits of nuclear existence and provides a fertile ground to advance our understanding of the atom’s structure. However, experimental access to these atomic species is very challenging and often requires the development of new technologies and experimental techniques optimized for the study of a single atomic species. The Laser Resonance Chromatography (LRC) technique was recently conceived to enable atomic structure investigations in the region of the superheavy elements. Here, we give an update on the experimental progress and simulation results.
Link tu publication
New Developments in the Production and Research of Actinide Elements
M. Laatiaoui and S. Raeder
This article briefly reviews topics related to actinide research discussed at the virtual workshop Atomic Structure of Actinides & Related Topics organized by the University of Mainz, the Helmholtz Institute Mainz, and the GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany, and held on the 26–28 May 2021. It includes references to recent theoretical and experimental work on atomic structure and related topics, such as element production, access to nuclear properties, trace analysis, and medical applications.
Link to publication
Resolution Characterizations of JetRIS in Mainz Using 164Dy
D. Münzberg, M. Block, A. Claessens, R. Ferrer, M. Laatiaoui, J. Lantis, S. Nothhelfer, S. Raeder and P. Van Duppen
Laser spectroscopic studies of elements in the heavy actinide and transactinide region help understand the nuclear ground state properties of these heavy systems. Pioneering experiments at GSI, Darmstadt identified the first atomic transitions in the element nobelium. For the purpose of determining nuclear properties in nobelium isotopes with higher precision, a new apparatus for high-resolution laser spectroscopy in a gas-jet called JetRIS is under development. To determine the spectral resolution and the homogeneity of the gas-jet, the laser-induced fluorescence of 164Dy atoms seeded in the jet was studied. Different hypersonic nozzles were investigated for their performance in spectral resolution and efficiency. Under optimal conditions, a spectral linewidth of about 200–250 MHz full width at half maximum and a Mach number of about 7 was achieved, which was evaluated in context of the density profile of the atoms in the gas-jet.
Link to publication
Electronic Structure of Lr+ (Z = 103) from Ab Initio Calculation
H. Ramanantoanina, A. Borschevsky, M. Block, and M. Laatiaoui
The four-component relativistic Dirac–Coulomb Hamiltonian and the multireference configuration interaction (MRCI) model were used to provide the reliable energy levels and spectroscopic properties of the Lr+ ion and the Lu+ homolog. The energy spectrum of Lr+ is very similar to that of the Lu+ homolog, with the multiplet manifold of the 7s2, 6d17s1 and 7s17p1 configurations as the ground and low-lying excited states. The results are discussed in light of earlier findings utilizing different theoretical models. Overall, the MRCI model can reliably predict the energy levels and properties and bring new insight into experiments with superheavy ions.
Link to publication
Electronic Structure of Rf+ (Z=104) from ab initio calculations
Harry Ramanantoanina, Anastasia Borschevsky, Michael Block, and Mustapha Laatiaoui October 19, 2021
We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: Rf+. We use the four-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction model to tackle the complex electronic structure problem that combines strong relativistic effects and electron correlation. We determine the energies of the ground and the low-lying excited states of Rf+, which originate from the 7s26d1,7s16d2,7s27p1, and 7s16d17p1 configurations. The results are discussed vis-à-vis the lighter homolog Hf+ ion. We also assess the uncertainties of the predicted energy levels. The main purpose of the presented calculations is to provide a reliable prediction of the energy levels and to identify suitable metastable excited states that are good candidates for the planned ion-mobility-assisted laser spectroscopy studies.
Link to publication
Recent progress in laser spectroscopy of the actinides
Michael Block, Mustapha Laatiaoui, Sebastian Raeder October 10, 2020
The interest to perform laser spectroscopy in the heaviest elements arises from the strong impact of relativistic effects, electron correlations and quantum electrodynamics on their atomic structure. Once this atomic structure is well understood, laser spectroscopy also provides access to nuclear properties such as spins, mean-square charge radii and electromagnetic moments in a nuclear-model independent way. This is of particular interest for the heaviest actinides around , a region of shell-stabilized deformed nuclei. The experimental progress of laser spectroscopy in this region benefitted from continuous methodological and technical developments such as the introduction of buffer-gas-stopping techniques that enabled the access to ever more exotic nuclei far-off stability. The key challenges faced in this endeavor are small yields, nuclides with rather short half-lives and the need to search for atomic transitions in a wide spectral range guided by theoretical predictions. This paper describes the basics of the most common experimental methods and discusses selected recent results on the atomic and nuclear properties of the actinides up to nobelium where pioneering experiments were performed at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany.
Link to publication
Laser Resonance Chromatography of Superheavy Elements
Mustapha Laatiaoui, Alexei A. Buchachenko, and Larry A. Viehland July 13, 2020
Optical spectroscopy constitutes the historical path to accumulate basic knowledge on the atom and its structure. Former work based on fluorescence and resonance ionization spectroscopy enabled identifying optical spectral lines up to element 102, nobelium. The new challenges faced in this research field are the refractory nature of the heavier elements and the decreasing production yields. A new concept of ion-mobility-assisted laser spectroscopy is proposed to overcome the sensitivity limits of atomic structure investigations persisting in the region of the superheavy elements. The concept offers capabilities of both broadband-level searches and high-resolution hyperfine spectroscopy of synthetic elements beyond nobelium.
Link to publication
Exploiting Transport Properties for the Detection of Optical Pumping in Heavy Ions
Mustapha Laatiaoui, Alexei A. Buchachenko, and Larry A. Viehland July 13, 2020
We present a kinetic model for optical pumping in Lu+ and Lr+ ions as well as a theoretical approach to calculate the transport properties of Lu+ in its ground 1S0 and metastable
3D1 states in helium background gas. Calculations of the initial ion state populations, the field and temperature dependence of the mobilities and diffusion coefficients, and the ion arrival time distributions demonstrate that the ground- and metastable-state ions can be collected and discriminated efficiently under realistic macroscopic conditions.
Link to publication